THOR-707, an engineered not-alpha IL-2, for the treatment of solid tumors induces strong immunological responses *in vivo*

Gilles Dufour, PhD
Director, Corporate Development and Clinical Strategy

CSGO Immunotherapy Seminar, Endorsed by AACR
March 22-23, 2019 • Shanghai, China
Forward-Looking Statements

Statements contained in this presentation regarding matters that are not historical facts are "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995, including statements associated with the expected ability of Synthorx, Inc. (the “Company”) to undertake certain activities and accomplish certain goals and objectives. These statements include but are not limited to statements regarding the Company’s business strategy, the Company’s plans to develop and commercialize its product candidates, the safety and efficacy of the Company’s product candidates, the Company’s plans and expected timing with respect to regulatory filings and approvals, and the size and growth potential of the markets for the Company’s product candidates. Because such statements are subject to risks and uncertainties, actual results may differ materially from those expressed or implied by such forward-looking statements. Words such as "believes," "anticipates," "plans," "expects," "intends," "will," "goal," "potential" and similar expressions are intended to identify forward-looking statements. These forward-looking statements are based upon the Company’s current expectations and involve assumptions that may never materialize or may prove to be incorrect. Actual results and the timing of events could differ materially from those anticipated in such forward-looking statements as a result of various risks and uncertainties, which include, without limitation, risks associated with the process of discovering, developing and commercializing drugs that are safe and effective for use as human therapeutics, and in the endeavor of building a business around such drugs. These and other risks concerning the Company’s development programs and financial position are described in additional detail in the Company’s filings with the Securities and Exchange Commission. All forward-looking statements contained in this presentation speak only as of the date on which they were made. The Company undertakes no obligation to update such statements to reflect events that occur or circumstances that exist after the date on which they were made.

The trademarks included herein are the property of the owners thereof and are used for reference purposes only. Such use should not be construed as an endorsement of such products. This presentation discusses product candidates that are under clinical study and which have not yet been approved for marketing by the U.S. Food and Drug Administration. No representation is made as to the safety or effectiveness of these product candidates for the therapeutic use for which such product candidates are being studied.
IL-2: Background

• Recombinant IL-2 (rIL-2; aldesleukin) is a well known systemic immunostimulatory cytokine that has consistently shown single agent responses and survival benefits across multiple tumor types\(^1,2\) thanks to its ability to expand CD8 T cell counts both peripherally and intratumorally.

• IL-2’s ability to expand CD8 T cell counts makes it a potential agent for combination with checkpoint inhibitors (e.g., anti-PD1 mAbs) to further promote CD8 responses.

• However, rIL-2 is clearly limited by suboptimal pharmacological properties and dose-limiting AEs (vascular leak syndrome (VLS)) that reduce its therapeutic index.

\(^1\)Proleukin Melanoma HCP Website
\(^2\)Proleukin Renal Cell Carcinoma HCP Website
IL-2 Biology: Dual Pharmacology Explains Low Therapeutic Index

HIGH DOSE
- Anti-Tumor Activity
- Treg
 - \(\alpha\beta\gamma\) Receptor
 - Suppression
 - of tumor immune response
- \(\alpha\beta\gamma\) Receptor
- Push Beyond Suppression

LOW DOSE
- No Anti-Tumor Activity
- Treg
 - \(\alpha\beta\gamma\) Receptor

Toxicity
- \(\alpha\)-receptor mediated innate lymphoid cell release of IL-5 induces eosinophilia
- Eosinophil
 - \(\alpha\beta\gamma\) Receptor
 - Push to Stimulation
 - Degranulation
 - Vascular Leak Syndrome (VLS)
 - Hypotension
 - Hypoperfusion
 - Pulmonary Edema
 - Impaired Oxygenation
 - Renal Impairment
 - Peripheral Edema
 - Rhabdomyolysis

Stimulation
- Teff (CD8+), NK cells
 - \(\beta\gamma\) Receptor
 - Cytolysis
 - via tumor immune response
 - Tumor

Blood 2014 124:3572-3576
Novel Amino-Acid Enables Site-Specific Bioconjugation

- Installation of a novel amino acid containing a dedicated chemical hook at a specific site
- Designed to bioconjugate moieties such as PEG for improved properties

Specificity

Improved selectivity through altered receptor binding

Polymer-Conjugates

- Increased half-life
- Epitope shielding through covalent PEG attachment via bio-orthogonal chemistry

1. doi:10.1038/nature13314. 2. doi:10.1038/nature24659
Single, stable PEG covalently attached to a novel amino acid installed in the “right” place results in a “not alpha” IL-2 protein.

IL-2 binds to the IL-2 receptor αβγ complex at high affinity because of the α chain.

Targeted pegylation of THOR-707 at the novel amino acid blocks α chain binding.

PEG-IL-2 Synthorin Properties

Receptor Binding Properties

IL-2 Receptor α Chain

IL-2 Receptor β Chain

IL-2

THOR-707

IL-2

THOR-707
THOR-707

THOR-707 Increases Lymphocyte Expansion in Non Human Primates (NHP) without Increasing Eosinophils

Compared to aldesleukin, THOR-707 shows a strong preference for expanding tumor-fighting lymphocytes vs. eosinophils responsible for VLS

• Aldesleukin dosing limited in people (37 mcg/kg) and NHP by VLS (25 mcg/kg and higher)
• No signs of VLS in NHP with THOR-707 up to 1,000 mcg/kg

60% Ki-67 in CD8+ Teff Cells Is Associated With Maximal Expansion and Can Be Achieved With THOR-707 Without VLS in NHPs

Peripheral CD8+ T Cells Activation and Proliferation

Peripheral CD8+ T Cells Ki67 Expression

Peripheral CD8+ T Cells pSTAT5 Expression

Ki67 is a closer PD marker to monitor cell proliferation compared to pSTAT5 in CD8+ T cells.
THOR-707

CD8+ Teff Expansion and Proliferation in Tumors Following a Single Dose looks similar to Immune Checkpoint Inhibitors

Select Immune Checkpoint Inhibitors

THOR-707

THOR-707 levels of CD8+ tumor infiltration are comparable to those observed for select immune checkpoint inhibitor mAbs (e.g., CTLA-4, PD-1, PD-L1, and combinations of them) in mouse melanoma tumor model1

1. PNAS Vol 107 No. 9, pages 4275-4280 (02 Mar 2010)
THOR-707

THOR-707 Is Efficacious as Single Agent and When Combined with mPD-1 Antibody

Single Agent, Day 17

Combo, Day 17

Durable regressions observed in THOR-707 + anti mPD-1 treated mice with four mice tumor free on day 49 following THOR-707 withdrawal on Day 14 and anti-PD-1 withdrawal on Day 17

*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001
• We applied our Expanded Genetic Alphabet platform technology to the design and production of THOR-707, a site-specifically pegylated IL-2 with a not-alpha IL-2R engagement profile

• THOR-707 induces the activation of both pSTAT5 and the molecular marker of proliferation Ki67, which is temporally correlated with the expansion of CD8+ T cells

• In NHP THOR-707 elicits maximal expansion of peripheral CD8+ T at 100 mcg/kg. There are no observations of VLS in those animals up to the maximal tested level of 1,000 mcg/kg

• The ability of THOR-707 to induce the expansion of CD8+ T cells results in anti-tumor effects both as single agent as well as in combination with an anti-PD1 mAb.

• THOR-707 IND submission is planned for 2Q19 with initiation of a Phase I/II clinical studies thereafter
The Synthorx Team

Better medicine is in our (synthetic) DNA

• Ingrid B. Joseph
• Lina Ma
• Jerod L. Ptacin
• Carolina E. Caffaro
• Hans R. Aerni
• Kristine M. San Jose
• Michael J. Pena
• Robert W. Herman
• Yelena Pavlova
• David B. Chen
• Ken Bragstad
• Shukuan Li
• Jasmine Nguyen
• Laura K. Shawver
• Lilia K. Koriazova
• Marcos E. Milla